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Abstract

The modified Cholesky factorization of Gill and Murray plays an important role in optimi-

zation algorithms. Given a symmetric but not necessarily positive definite matrix A, it computes

a Cholesky factorization ofA +E, where E= if A is safely positive definite, and E is a diagonal

matrix chosen to make A +E positive definite otherwise. The factorization costs only a small

multiple of n 2 operations more than the standard Cholesky factorization. We present a new algo-

rithm that has tnese same properties, but for which the theoretical bound on II E II is substan-

tially smaller. It is based upon two new techniques, the use of Gerschgorin bounds in selecting

the elements of E, and a new way of moiiitoring positive definiteness. In extensive computa-

tional tests on indefinite matrices, the new factorization virtually always produces smaller values

of I I E I I than the existing method, without impairing the conditioning of A +E. In some cases

the improvements are substantial. The new factorization may prove useful in optimization algo-

rithms.



1. Introduction

The modified Cholesky factorization was introduced by Gill and Murray [1974], and subse-

quently refined by Gill, Murray, and Wright [1981]. Given a symmetric, not necessarily positive

definite matrix A E Rn, it calculates a Cholesky (i.e. LLT, or equivalently TDLT) factorization

of A +E, where E is 0 if A is safely positive definite, and E is a non-negative diagonal matrix for

which A +E is positive definite otherwise. When A is not positive definite, there is an a priori

error bound on how large E can be as a function of A; the practical intent is that E not be much

larger than is necessary to make A +E positive definite. The factorization uses only about n2/2

more operations than the normal Cholesky factorization, which costs approximately n3 each

multiplications and additions.

The modified Cholesky factorization has become very important in optimization algo-

rithms. Its primary use is in line search methods for unconstrained optimization, where it is used

to generatL a descent search direction when the Hessian matrix is not positive definite (see e.g.

Gill, Murray, and Wright [1981]). It is also used in line search methods for constrained optimiza-

tion problems (Gill, Murray, and Wright [1981]), and in some trust region methods (Dennis and

Schnabel [1983]).

This paper presents a new modified Cholesky factorization algorithm that is intended for

the same purposes as the current method. The new algorithm still costs only a small multiple of

n. operations more than the standard Cholesky factorization. It possesses a much smaller a

priori bound on the size of the diagonal matrix E, and in extensive computational tests, IIE II

almost never is larger, and in many cases is cc.-siderably smaller, than that generated by the algo-

rithm of Gill, Murray, and Wright. In fact, when A is not positive definite, I IE I is usually

close enough to the negative of the smallest eigenvalue of A that the new algorithm may be a

usefui. inexpensive way to estimate this cigenvalue.
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The remainder of this paper is organized as follows. Section 2 contains a brief summary of

the motivation and uses for the modified Cholesky factorization in optimization algorithms. Sec-

tion 3 summarizes the goals of this factorization and the basic challenges that it presents, and sec-

tion 4 briefly describes the Gill, Murray, and Wright [1981] algorithm.

In Section 5 we present the new algorithm. It contains two main novel features, the use :;f

Gerschgorin bounds in determining both the pivot sequence and the elements of E, and a new

two-phase strategy for determining when a matrix is not positive definite and needs to be per-

turbed. In Section 6 we present the results of an extensive computational comparison of the

behavior of the new and old factorizations on indefinite test matrices of dimensions 25 to 75.

Section 7 contains some brief conclusions.

Throughout the paper we consider the Cholesky factorization, i.e the factorization into

LLT , where L is lower triangular, as opposed to the LDLT factorization, where L is unit lower

triangular (ones on the diagonal) and D is a positive diagonal matrix. The conclusions of the

paper are true for either factorization. We use the Cholesky because we believe it makes the

exposition simpler. We use the version of the Cholesky factorization that makes a rank one

change to the remaining submatrix at each iteration (analogous to Gaussian elimination), rather

than the version that delays the changes to any element until it is in the pivot column (analogous

to Crout reduction). The use of the first version will be seen in Section 5 to be important to our

algorithm.

An important piece of notation, used throughout the paper, is that we use Aj to denote the

principal submatnx that remains to be factored at the start of the j'4 iteration of the factorization.

Thus, A, is an n+l-j x n+l-j matrix, consisting of the values that reside in rows and columns j

through n at the start of the jth iteration. For consistency, A I is the original matrix A. This

notation is expanded in Section 3.
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2. The Use of the Modified Cholesky Factorization in Optimizatioa Algorithms

The modified Cholesky factorization was introduced by Gill and Murray [1974] in the con-

text of a line search method for solving the unconstrained optimization problem

minimize f :R" -- R
x E R

Unconstrained optimization methods generally base each iteration upon the quadratic model of

f(x) around the current iterate xc

m(xc +d)=f(xc)+Vf(xc)Td+ AdTHcd , (2.1)

where H, is the Hessian matrix V2f (xc) or a symmetric approximation to it. If Hc is positive

definite, then the step dc= -H:'1 Vf (xc) is the minimizer of (2.1) and also a descent direction for

f (x), so that a satisfactory next iterate x, always can be found by choosing x. = x, - .cd, for

some -c > 0. If H, has one or more negative eigenvalues, however, then the model (2.1) is

unbounded below, and the direction dc = -HJ-Vf (xc) may or may not be a descent direction for

f(x). In this case, Gill and Murray [19741 suggested calculating dc = -(Hc+Ec)-'Vf (xe) as the

search direction, where H,+Ec is positive definite, and again choosing x, = x, - Xcdc for some

k, > 0 by a line search procedure. By standard convergence results, if I IHc I is uniformly

bounded above, I I E, I I is bounded above as a function of I I HI I, and the condition number of

Hc+Ec is uniformly bounded above, then the sequence of iterates generated by a standard line

search method that uses such search directions will be globally convergent in the sense that the

limit of the sequence of gradients converges to zero. If E = 0 when H is positive definite, then

the method will also be quadratically convergent in the neighborhood of a strong local minimizer.

(See Dennis and Schnabel [1983] for a summary of these results.)

The algorithm of Gill and Murray [1974] for choosing E, s.:isfies all the aforementioned

conditions on E,. It also is very efficient in that it calculates either the Choleskv factorization of
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H, if it is positive definite, or the Cholesky factorization of H,+E, otherwise, at barely a higher

total cost than a standard Cholesky factorization, without knowing a priori whether H, is positive

definite or not. For these reasons, it has become a standard technique in line search methods for

unconstrained optimization problems. The algorithm was refined somewhat subsequent to its

introduction, and a modem version, that has performed very well, is given in Gill, Murray, and

Wright [1981].

The modified Cholesky factorization is also used in some line search methods for solving

constrained optimization problems. Some algorithms for solving such problems also generate a

sequence of unconstrained quadratic models, and if the Hessian of any such model is not positive

definite, the same techniques are applicable. For more details, see e.g. Gill, Murray, and Wright

[1981].

Some trust region methods for optimization problems also use the modified Cholesky fac-

torization. While we will not elaborate upon these methods here, in some of them it is useful to

have an upper bound on the most negative eigenvalue X, of He, and the norm of the matrix E,

from the modified Cholesky factorization serves this purpose. Dennis and Schnabel [1983] dis-

cuss trust region methods that incorporate the modified Cholesky factorization, and Shultz,

Schnabel, and Byrd [1985] show how to construct efficient and globally convergent trust region

methods if a satisfactory upper bound on %, is available. The methods described in this paper

produce bounds that are satisfactory in this sense.

Our general reasons for pursuing a new modified Cholesky factorization algorithm were

given in Section I ana are elaborated further at the end of Section 4. In addition, from an optimi-

zation perspective, the new method may lead to a new efficient and simple implementation of

trust region methods. We discuss this possibility briefly in Section 7.
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3. Goals and Challenges of the Modified Cholesky Factorization

Given a matrix A E R XnI that is symmetric but not necessarily positive definite, the objec-

tive of the modified Cholesky factorization is to construct a Cholesky (LLT) factorization of a

positive definite matrix A +E, where E is a non-negative diagonal matrix. More specifically, the

factorization has the following four goals : 1) If A is safely positive definite, E should equal 0 ;

2) If A is indefinite, I I E I should not be much greater than -Xt(A), where X1(A) is the most

negative eigenvalue of A; 3) A +E should be a reasonably well conditioned matrix, and 4) the

cost of the factorization should only be a small multiple of n2 operations more than the cost of

the normal Cholesky algorithm.

One obvious way to select E would be to find X.I(A), and, if XI(A) < 0, let E equal

[-.(A ) + r-] 1, for some small positive c. This would satisfy the first 3 goals, but the expense of

finding the eigenvalues of a matrix exceeds the cost requirements specified in our final goal by at

least an order of magnitude. Thus the major challenge in developing a modified Cholesky factor-

ization is to satisfy the first 3 goals while not increasing the cost by more than 0(n 2). Among

other things, this implies that a one pass algorithm is essential.

There is a basic tradeoff in deciding upon the size of each of the diagonal elements of the

matrix E. Let the n+1-j x n+l-j principal submatrix remaining to be factored at the jth itera-

tion, consisting of the current elements in rows j through n 3nd columns i through n, be denoted

AJ = [Ja, ]

where CCER is the current j1 h diagonal element, ajER -J is the current vector of elements in

column j below the diagonal, and A,(R -JM)'" -i).(We will use the convention that the sub-

scripts of the elements in the vector a, are i = j+l through n, so that (aj), = Aii, i=j+l, ,n).

Then at the jph iteration, the normal Cholesky factorization algorithm computes Li, = N--, L, =
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(a),IL1 , i=]+l, • ,n, and (assuming the changes to the remaining elements are not deferred)

aaT
ati

In the modified Cholesky factorization, the computations are instead Ljj = x , L1 =

(a,)i!L.j, i=j4+l, ,n, and

a1~1 =x --- a-T
aj+ +j

where 8, is greater than or equal to zero and is the j]h diagonal element of the matrix E. The

tradcoff between making 5, large or small leads to the following dilemma. If cr1 is negative and

8j is chosen so small that cc, +8j is barely greater than 0, then a will be large, and Aj+1 will

have large negative eigenvalues, implying that the elements of E in some remaining iterations

will need to be large. On the other hand, if 8j is large, then we have already added a large amount

to the diagonal. The challenge lies in adding the appropriate amount to the diagonal of A at the

appropriate time in the algorithm. This requires that the algorithm consider more infornation

than just the value of ct, in chosing 5j. It will be seen in Sections 4 and 5 that considering the

values of a, as well as a.j is sufficient to produce effective modified Cholesky factorization algo-

rithms in both theory and practice.

4. The Modified Cholesky Factorization of Gill, Murray, and Wright

Gill, Murray, ard Wright [19811 give a modified Cholesky factorization algorithm that is

designed to satisfy the four goals stated at the start of Section 3. Given a symmetric but not

necessarily positive definite matrix A e R1" ' , it computes an LDLT factorization of a matrix

A +E, where E is a non-negative diagonal matrix. In this section, we briefly review their method.

To be consistent with the remainder of the paper, we restate their algorithm in terms of the
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Cholcsky (LLT) decomposition. This does not change any of the important properties of the

algorithm that we discuss.

At each iteration, the algorithm of GiU, Murray, and Wright first selects the maximum (in

absolute value) diagonal element in the remaining principal submatrix Aj, and pivots it to the top

left position by interchanging its row and column with the pivot (j'h) row and column, respec-

tively. Then, if A1 is now the pivoted principal submatrix, with

Aj = OatJAaJT(4.1)

where tj is the diagonal element in the pivot column and aj is the remainder of the pivot

column, the elements of the ne) ,principal submatrix Aj~ are computed by

- a . " (4.2)

The value of 5, at each iteration is chosen to be the smallest non-negative number such that

05. Ila , -<1

where 3>0 is an a priori bound selected to minimize a worst case bound on IIE I I. If ctj <0

and this value of 5 is less than -2cx,, then 61 = -2aj instead.

What remains to be described is the choice of 3. Let = the maximum magnitude of the

off-diagonal elements of the original matrix A, and y= the maximum magnitude of the diagonal

elements of A. Gill and Murray [1974] produce an error bound on iE I as a function of 3 for

their algorithm, and show that it is minimized when p2 =t ,/n 2-l. For that choice of ,

lE I I--< 2 (N,'n2-I + (n-1) ) t, + 27, (4.3)

or roughly

H E II_!-4n + 2y (4.4)

for moderate to large n. However this choice of 3 may cause positive definite matrices .4 to be
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perturbed, so the selection of 3 is adjusted in order to avoid this. Gill and Murray [1974] also

show that the choice N3 'y guarantees that E = 0 for positive definite A. Thus their algorithm

assigns 32 to be the maximum value of y', /I -, or machine epsilon. If y > { i n",i, the

usual case, then the error bound for this adjusted P3 becomes

II E II5 (n2+l)y + 2(n-1)r + 2/y, (4.5)

which is larger than (4.3).

The modified Cholesky factorization algorithm of Gill, Murray, and Wright [1981] has pro-

ven to be an effective factorization in the context of optimization algorithms, and as will be seen

in Section 6, does quite a good job of fulfilling the four goals stated at the beginning of Section 3

(The cost of the algorithm is approximately n 2 comparisois, and 0(n) arithmetic operations,

more than the standard Cholesky factorization.) It should be noted that while the diagonal pivot-

ing employed by the a':orithm of Gil, Murray, and Wright does not affect the analysis described

above, it is very important to its good practical performance.

There appear to us to be two important ways in which the algorithm of Gill, Murray, and

Wright [19811 might stiU be improved. First, the bounds (4.3) and particularly (4.5), which are

attained by the algorithm for particular matrices A, are far from optimal, as will be discussed in

Section 5. Secondly, the resuits of Section 6 show that in practice, the value of II E I I- pro-

duced by the algorithin is sometimes many times too large. The new method described in Sec-

tion 5 primarily attempts to improve upon the algorithm of Gill, Murray, and Wright in these two

regards.



9

5. The New Modified Cholesky Factorization

Our new modified Cholesky factorization algorithm incorporates two main new techniques.

The first involves using Gerschgorin Circle Theorem bounds to determine the elements in the

non-negative diagonal matrix E that is added to an indefinite matrix A in order to make it posi-

tive definite. The second is a new technique for assuring that one does not perturb an already

positive definite matrix, i.e. that E=O if A is positive definite. In Section 5.1 we describe the

new technique that uses Gerschgorin bounds to decide how much to add to the diagonal, and

show that it leads to an improved upper bound on II E I I. In Section 5.2 we describe the new

technique for assuring that a positive definite matrix is not perturbed, and show that unlike the

strategy of Gill, Murray, and Wright [1981], it can be incorporated into a modified Cholesky

decomposition algorithm without causing the bound on iE ]1.. to grow significantly. In Sec-

tion 5.3 we describe our full new algorithm, which integrates these two techniques, discuss its

theoretical properties, and give a simple example comparing it to the method of Gill, Murray, and

Wright [19811.

5.1 Using Gerschgorin Circle Theorem bounds to determine the amounts to add to the

diagonal

In this section, we introduce our basic strategy for choosing a non-negative diagonal matrix

E such that A +E is positive semi-definite. (The exposition and theory are cleaner if we allow the

possibility that .4 +E is positive semi-definite; the changes to assure that it is strictly positive

definite are small in practice and theory, and are described in Section 5.3.) The strategy described

in this section may result in E having some positive elements even if A is positive definite; the

modifications we make to avoid this are described in Section 5.2.

The Gerschgorin Circle Theorem states that if A E R1 " is a symmetric matrix with cigen-

values _ ._<,., then each c- {GjuG~u .. uG • ), where
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C, ai IA I ,A Aii u j] * [Glowi , Gupi] , =, n (511)

Thus, since A -%,I is positive semi-definite, an upper bound on the amount that must be added to

the diagonal of A to make A +E positive semi-definite is

Maxadd-GCT 4 max {0,--GLowj} (5.1.2)

An objective of the new modified Cholesky factorization is to find E for which A +E is positive

semi-definite and for which we can guarantee

IE I!I -5 Maxadd-GCT, (5.1.3)

at least in the case when we are not concerned about perturbing a positive definite matrix. This

bound is easily achieved as indicated by the following lemma and theorem. Note that since,

using the notation of Section 4,

Maxadd-GCT < y+(n-1)4 , (5.1.4)

(5.1.3) is guaranteed to be stronger than (4.3).

Lemma 5.1.1. Let A e RnX have the Gerschgorin Circle Theorem bounds Gi, i=1, • , n given

in (5. 1. 1). Denote A =_ [a 41 , where oxR, aER'n-1 , A e R(n-)x(n-1) Let , =-

inA (51.) Deoe CTLSa-

have Gerschgorin Circle Theorem bounds Gi, i=2, ,n, where

[ - iuI +; AJj ( 4 [Glow, G up, i 2,
I. -- j=z-
J 4 J1-

Then if

5_>max, I aII -(x) (5.1.5)

Pr-of., it ta .1,lw

Proof. Note that (5.1.5) guarantees ox+85 _> 0, with equality possible only if a =0. If a =0, we may
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assume that we set A = A so that the lemma is trivially true. For the remainder of the proof, we

assume (x+5 > 0.

Let us again use the convention that the subscripts of the vector a are i = 2 through n, so

that ai =Ai 1, i=2, ,n. Then we have

rowi of A= rowiofA - -- a+ , i=2,- n

Thus

[ - [ [ 1--. Aij [< (Ila III- Jail) Jail

I - I j I -I (A j I I (5.1.6)
J 4  J J

Also,

S-A 1,,. = a . (5.1.7)

Combining (5.1.6) and (5.1.7), recalling that the term A11 = ai is present in Gi but not in ji, and

using 5 > a -a =-Glow 1, we get

Glowi - Glowi > I I I I a I

J i Ia i  I
= L+Ia ( 5+(a-lla 1I)) = - S(+Glow) 20

i = 2,.•. , n. Similar calculations show that

- Gupi - -+6 (S+Glowl+2[ai[) <0

Thus G1 Gi. El

Lemma (5.1.1) shows that the choice (5.1.5) causes the Gerschgorin intei als to contract.

Thus it is almost immediate that if we make this choice with equality at each iteration of the

modified Cholesky factorization, we will satisfy (5.1.3).
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Theorem 5.1.2. Let A e R have the Gerschgorin Circle Theorem bounds (5.1.1), and let

Maxadd--GCT be defined by (5.1.2). Suppose that at each iteration of the modified Cholesky

factorization, the remaining principal submatrix Aj E R("+-jX)(+-) is given by (4.1), (A =A ),

i = max[0, Iaj IIt-a} , (5.1.8)

and Aj+ 1 E R(,- J)x(n-j) is calculated by (4.2). Let E = diag ( •• ,54 . Then A+E is positive

semi-definite and (5.1.3) is true. Furthermore, if any diagonal pivoting strategy is used at each

iteration (i.e. rows and columns i and j are swapped for some i >j), (5.1.3) remains true.

Proof. The proof is almost immediate from Lemma 5.1.1. Let (GJ)j, i=j, - • ,n denote the Ger-

schgorin interval obtained from row i of Aj, and let (Gilow)i denote the lower bound of (GJ)i.

From Lemma 5.1.1, the choice (5.1.8) assures that

(GJ~llow)i (GJilow)i , lj:<in . (5.1.9)

From (5.1.8), (5.1.9), and (5.1.2),

8j5 <-(G i low )j -Glow, < Maxadd--GCT

This completes the proof of the first part of the theorem. Since diagonal pivoting of a symmetric

matrix only permutes its Gerschgorin intervals but does not alter them, and since Lemma 5.1.1

and the above part of this proof make no use of the ordering of the Gerschgorin intervals, the

theorem is unaffected by any diagonal pivoting strategy. 0

Our algorithm makes one further modification to the strategy (5.1.8) for selecting 8j. It is

that we require the amount that is added to the diagonal at iteration j to be at least as great as the

greatest amount that has been added to the diagonal at any previous iteration. That is,

5j = max(0, 1 haI I h-et., 5j-l} . (5.1.10)

It is straightforward that Theorem 5.1.2 remains true with (5.1.10) in place of (5.1.8), because by

induction this choice still satisfies (5.1.3), and trivially it still satisfies (5.1.5).
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The rationale for this modification is as follows. At any iteration, suppose 5j given by

(5.1.10) is larger than that given by (5.1.8) i.e. max(0, laj IIr-aj ) < 5j-i. Then the new

choice (5.1.10) doesn't change the value of i IEI at this point in the algorithm, because 5i =

5j-,. It may cause subsequent values of 8, to be smaller, however, because it results in a larger

a i+5, and hence a smaller multiple of ajaJ is subtracted from Aj1 , which means that Aji+ has

larger or identical eigenvalues than it would have using (5.1.8). This reasoning does not imply

that the final value of I IE I I will be smaller using (5.1.10) than using (5.1.8), but it makes this

seem likely, and in practice the modification appears to be helpful in some cases and virtually

never harmful.

The total additional work required by the modifications to the Cholesky factorization

described so far in this section is approximately n 2/2 additions, for the computation of I I aj I I I at

each iteration. In comparison, the additional work for the algorithm of Gill, Murray, and Wright

[1981] is approximately n 2/2 comparisons, because it computes IIa I I...

Finally, as noted in Section 4, it is important in practice to use a diagonal pivoting strategy,

even though it does not affect the theoretical results given above. We could simply pivot based

on the maximum diagonal element, as is done by Gill, Murray, and Wright [1981]. However,

recall that the amount we add to the diagonal at iteration j will be at least the negative of the

lower Gerschgorin bound of the pivot row for that iteration. This suggests that we instead select

as pivot row (and column) the row (and column) for which the lower limit of the Gerschgorin

interval is largest. If this Gerschgorin bound is positive, then we will not increase I I E I I at this

iteration, and the Gerschgorin intervals will contract.

This pivoting strategy assumes that the Gerschgorin bounds for each remaining row are

available at each iteration. This would require a total of approximately n 3/2 additional additions,

which is too high. An alternative is to pivot based on the estimates of the Gerschgorin bounds

that result from the proof of Lemma 5.1.1. If we let (g-i)i denote the estimate of the lower bound
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of the Gerschgorin interval of row i of Aj, then from the proof of Lemma (5.1.1),

(gj'l)i = (gJ)i + I(aj)i + , j

For the entire algorithm, this requires approximately n2/2 each additional multiplications and

additions. To begin this process, the Gerschgorin bounds of the original matrix A must be calcu-

lated, which costs an additional n 2 additions. Thus the total costs of the modifications to the

Cholesky factorization discussed in the section are 2n 2 additions and n2/2 multiplications.

We should mention that the strategy for preserving positive definiteness that we discuss in

Section 5.2 will often cause the additional costs given in this section to be reduced considerably.

5.2 The Strategy for Not Perturbing Positive Definite Matrices

In this section we introduce our strategy for assuring that our modified Cholesky decompo-

sition does not perturb an already positive definite matrix, while still guaranteeing that if the

matrix is not positive definite, then the amount that is added to the diagonal is not too large. The

strategy is quite simple. We divide our decomposition algorithm into two phases. In the first

phase, we apply the standard Cholesky decomposition (the version described in Section 3 where

we make a rank-one modification to the remaining submatrix at each iteration) for k>O iterations,

stopping at the first occasion that the next, k+1s iteration would cause any diagonal element in

the next remaining submatrix Ak+ 2 to become non-positive. At this point we know that the

current submatrix Ak+Il, as well as the original matrix A, is not positive definite. We then switch

to the second phase, where we apply the modified Cholesky decomposition algorithm described

in Section 5.1 for the remaining n-k iterations of the decomposition.

If the original matrix A is numerically positive definite, then this strategy results in thc nor-

mal Cholesky decomposition being performed throughout. If A is not positive definite, then this

stratcgy results in the normal Cholesky decomposition being performed for k E [0, n-2]
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iterations,

followed by the application of the modified Cholesky decomposition to Ak+l, which results in the

Cholesky decomposition of Ak+lE+ for some non-negative diagonal matrix E. The overall result

is the Cholesky decomposition of A +E, where E is E augmented with zeroes in the first k diago-

nal po;itions (modulo pivoting).

The crucial question is "how large is I IL II.., and hence IIE I1-?". Section 5.1 gives a

bound for II E II - that depends on the sizes of the elements of Ak,.. In Theorem 5.2.1, we show

that our two-phase strategy assures that no element in Ak+1 has grown by more than the value of

the largest diagonal element element in A. This in turn means that our decomposition still

achieves a good bound on iE I - in terms of the original matrix A.

Theorem 5.2.1. Let A e R n"n , and let y = max

{I Aii I ,1<i <n ), =max { A11 I 1, :i <j<_n }. Suppose we perform the standard Chole-

sky decomposition as described in Section 3 for k > 1 iterations, yielding the remaining principal

submatrix Ak+1 E R(n- k)x(n - k ) (whose elements are denoted (Ak+1)i], k+l _< i,j _n), and let " =

max { I(Ak.,)jj I ,k+l5i n ) and =max [(A +l)ij I,k+li <j5n }. Then if

(Ak+l),i >O,k+l_<i <n, then yjy and <5+y.

Proof: Let A = FT] , where B E RkA ,C r R ( - k)xk ,F e R(n -k)x(n - k). After k iterations

of the Cholesky factorization, the first k columns of the Cholesky factor L have been determined;

denote them by IEL where/.e Rkk is triangular and M - R(n - k)xk. Then

B =L -, C=MT, and F =M MT +Ak+l. (5.2.1)
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From (5.2.1), F, = II Mow i 1122 + (Ak+1)ii, k+1 -i <n, so that from Fi <-y and (Ak+I)ii O,

II Mow i II2 2 < Y. (5.2.2)

Thus for any off-diagonal element of Ak+i, (5.2.1), (5.2.2) and the definition of imply

(Ak+i)ij < Fij - (Mrow i) (Mw j)T < +y. (5.2.3)

which shows ,< t+y. Also for all the diagonal elements of A,+I, (Ak+,)ii 0, (5.2.1) and the

definition of y imply

0:5- (mk+l)ii 5- Eli :- y. (5.2.4)

which shows 'y < y and completes the proof. 0

We note that the result of Theorem 5.2.1 is independent of the diagonal pivoting strategy

that is used. We also note, however, that the technique of proof of Theorem 5.2.1 actually shows

that the largest off-diagonal element in Ak+l is at most equal to the largest off-diagonal in F plus

the largest diagonal in F, where F, as defined in the proof of Theorem 5.2.1, is the diagonal sub-

matrix of A that corresponds to Ak+i. Thus a pivoting strategy that uses the larger diagonal ele-

ments as pivots in the first phase will limit the growth in the off-diagonal of Aj+i even more than

is indicated by Theorem 5. " :. Our phase one algorithm pivots the largest remaining diagonal

element to the top, and thus is likely to have this effect of further limiting element growth.

The possibility of incorporating this two-phase strategy into the method of Gill, Murray,

and Wright [1981] is discussed in the next section.
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5.3 The Complete New Algorithm

We have now presented all the main parts of our new modified Cholesky decomposition

algorithm. An outline of the complete algorithm is given in Algorithm 5.3.1, and a fully detailed

description is given in Appendix I. To summarize, the first phase of the algorithm applies the

standard Cholesky decomposition, using a diagonal pivoting strategy that pivots the largest

remaining diagonal element to the top left. This phase ends when the next iteration of the stan-

dard Cholesky decomposition would cause any diagonal element in the remaining submatrix to

become non-positive. In the second phase, the modified Cholesky decomposition described in

Section 5.1 is applied to the remaining submatrix. This phase determines what to add to the diag-

onal at each iteration from the lower Gerschgorin bound of the pivot row, and pivots based upon

estimates of these lower Gerschgorin bounds.

Three additional, relatively minor features have been incorporated into Algorithm 5.3.1 to

guard against the resultant A +E being singular or very ill-conditioned. First, the switch to phase

two is made when any diagonal element of the remaining submatrix would become less than rt,

rather than less than zero as is discussed in Section 5.2. Here y is again the maximum diagonal of

A, and -r is a small constant (we choose - = (macheps)"3). This means we may perturb a positive

definite matrix if its condition number is greater than 1/. Second, in phase two, to assure that

A +E is positive definite rather than positive semi-definite, we set (using the notation of Section

5.1) each

j =max (0,--aj +max a, II }

where the t y term is new. This causes the bound (5.1.3) on IE I to increase a tiny bit, to

HE 1* < Maxadd--GCT + ry. (5.3.1)

but in conjunction with the preceding change, allows us to bound the condition number ofA +E.

Finally, at the final iteration of phase two, when only a 2x2 submatrix A,,_ remains, we use a dif-

ferent strategy : we calculate the cigenvalues X1, and ?-hi of A,,-,, and if ?1, < tr max h, ,7}, we
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Algorithm 5.3.1 -- Modified Cholesky Decomposition

Given A e R > × symmetric and t (e.g. -t= (macheps)' 3 ),
find factorization L LT of A +E , E > 0

y:= max I Aii I ; j := 1
(* Phase One, A potentially positive definite *)

While j _< n do
Pivot on maximum diagonal of remaining submatrix

If min {Aii - A } <T2
i + 1! . Ajj

then go to Phase Two
else perform jth iteration of standard Cholesky factorization and increment j

(* Phase Two, A not positive definite *)
k := 1 - I (* k = number of iterations performed in Phase One *)
Calculate lower Gerschgorin bounds of Ak.1
Forj := k+1 to n-2 do

Pivot on maximum lower Gerschgorin bound estimate
Calculate Ejj and add to Ajj

(* E = min( 0,-Ajj+max{ Aij 1 ,ty} ,E 1 j-1}*)
= 1

update Gerschgorin bound estimates
perform jth iteration of factorization

complete factorization of final 2x2 submatrix using its eigenvalues

choose 5,_1 so that the 12 condition number of A,,_. +51 = l/t (we also require X.to+8,,- > ty).

This generally gives a smaller value of 5,,-, than the Gerschgorin circle theorem based strategy

would, and in theory it is straightforward to show that

18,-i -?,Io + 1  (X .h - .i,) - Maxacdd-GCT + 2t y (532)

since -Xk, < Maxadd-GCT and h) ,j -XI,0 
< 2 (Maxadd-GCT +y).

The theoretical properties of our full algorithm are summarized in Theorem 5.3.2.

Theorem 5.3.2. Let A , y, and be defined as in Theorem 5.2.1, suppose we apply the modified
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Cholesky factorization algorithm in Appendix I to A, resulting in the factorization LLTofA +E.

If A is positive definite and at each iteration, Lij 2 >ty, then E =0. Otherwise, E is a non-

negative diagonal matrix, with

E Ij-<Gersch + 2- (Gersch +y) (5.3.3)

where Gersch is the maximum of the negative of the lower Gerschgnn bounds of Ak+1 that are

calculated at the start of Phase Two. If k=0 then

Gersch = Maxadd--GCT < y+ (n- 1) (5.3.4)

where Maxadd-GCT is given by (5.1.1-2), otherwise

Gersch < [n -(k+1)] (y+'). (5.3.5)

Proof: Immediate from Theorem 5.1.2, Theorem 5.2.1, and equations (5.3.1-2). 0

It is also possible to produce an upper bound on the condition number of A +E, of the same

sort that is provable for the Gill, Murray, and Wright [1981] algorithm. The key properties

needed for this are that I IE I1, and hence max{Li 1, is bounded above, that min{Li ) is bounded

below (by NTI), and that ILij I < Lii for all 15j <i n. (The final property comes from diagonal

pivoting and the look-ahead property in phase one, and from the Gerschgorin bound strategy for

choosing 8, in phase two.) The bound on the condition number that one can obtain is of mainly

theoretical interest, since it is exponential in n; the computational results of Section 6 show that

the condition number of A is bounded above by about l/t in practice.

We note that our two phase strategy could also be incorporated into the method of Gill,

Murray, and Wright [1981 ], and that this would result in a significant improvement in their upper

bound on IIE I I. This could be done by using the same two phase structure, and replacing our

phase two by their modified Cholesky decomposition. If this were done, their algorithm could

simply choose 32 = 6 n -k)2-1 in phase two, rather than the maximum of this quantity and "

(whcre . and "y are defined as in Theorem 5.2.2) because it would know that it is dealing with a
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non-positive definite matrix. Hence the resultant method would achieve the bounds (4.3-4) if it

switched to phase two immediately, and

lI Je 11- 4(n-k) +2j 5 4(n-k)( +-y)+2-y

otherwise. This would be a significant improvement over the current bound (4.5), although it is

still inferior to (5.3.3-5).

Our new algorithm meets our goal of not significantly increasing the cost of the standard

Cholesky decomposition, which is about n 3/6 each additions and multiplications. The additional

costs of the modified factorization are (n-k)2 additions to calculate the Gerschgorin bounds of

Ak~i at the start of phase two, (where k is the number of iterations performed in phase one),

(n-k)212 additions to calculate the 11 norms of the pivot rows during phase two, and at most

(n-k) , '2 each multiplications and additions to update the Gerschgorin bounds during phase two.

In addition there is a small multiple of n-k additional work. (The strategy for precalculating the

new diagonal during phase one, in order when to determine when to switch to phase two, only

costs a small multiple of n operations as long as the precalculated values are stored and used

when phase one is continued.) Thus the total additional cost of the modified Cholesky decompo-

sition at most 2n 2 additions and n2/2 multiplications, in the case when phase two is started

immediately (k=O). In many cases in our experience, k is close to n so the additional costs are

very small.

Finally, we include a small example to demonstrate the performance of the new modified

Cholesky algorithm. Consider the matrix used by Gill, Murray, and Wright [1981] to illustrate

their modified Cholesky factorization,

A = [ 1

Our new algorithm will proceed as follows. At the first iteration, no pivoting is performed in

phase one, and then the algorithm immediately switches to phase 2 because A 33 -A <
A 0.Th
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Gerschgorin intervals of A are

[-2, 41, [-3, 5] and [-4, 6].

The row with the maximum lower Gerschgorin bound is also row 1, so no pivoting is required in

this iteration for phase 2 either. The modified Cholesky algorithm then choses 8 = 2 = -(Ger-

schgorin lower bound of row 1), and after the elimination step,

2[3 7/3]

and the estimated Gerschgorin bounds are unchanged. The algorithm now enters the final, 2x2

submatrix stage. The eigenvalues of A2 are (-2.2196, 2.5538), so that 62 = 2.2196 and 5total

-2.2196. Thus for the new algorithm,

E 2.22 2.221

and I E II 2.22. This is 1% greater than the most negative eigenvalue of A which is -2.2109.

(If we had continued the Gerschgorin strategy for A 2 rather than use the eigenvalue strategy, 52

would be 2.67.)

Using the same matrix A, the Gill, Murray and Wright algorithm computes

E= 5.01 2.241

with lIE 11,,=5.01.
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6. Computational Results

We have compared the performance of our new modified Cholesky factorization (Algo-

rithm 5.3.1 and Appendix I) to the algorithm of Gill, Murray and Wright [1981] on a number of

indefinite test matrices. The measures we used to assess the performance of the algorithms are the

ratios II E II -/ I 1 (A ) , termed relative maxadd, which reflect how well the algorithm has

satisfied the goal of adding as little as possible to the diagonal of A, and the condition numbers of

A +E. We already know that the other two goals stated at the beginning of Section 3, low cost

and not disturbing safely positive definite matrices, are satisfied by both algorithms.

We tested both algorithms on matrices of dimension 25, 50 and 75, with eigenvalue ranges

of [-1, 100001, [-1, 1], and [-10000,-1. For each combination of dimension and eigenvalue

range, 10 matrices were created. Thus (the same) 90 test problems that were used to test each

algorithm. Each test matrix was created by forming the product Q 1Q2Q3 D (Q 1Q2 Q3 )T, where

each Q, is a Householder matrix of the torm

W wT]

and each component of each w is randomly generated from a uniform distribution in the range

[-1, 1]. Each D is a diagonal matrix whose elements were randomly generated from a uniform

distnbution ;n the desired eigenvalue range, with the exception that for the set of test matrices

with cigenvalue range [-1, 10000], one element of D was generated from the range [-1, 0], thus

guaranteeing at least one negative cigenvalue in the test matrwcs of that range.

The relative maxadds for the 90 tests of each algorith.n are shown in Figures IA,C.E.

2A.C.E and 3A.C,E in Appendix II. In summary, the relative maxadds for the new algorithm

were always small. and sometimes considerably supcrior to those for the Gill. Murray, and

Wrn,_,t algorithm, although this algorithm's performance was also good in most cases. The
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relative maxadds for the new algorithm ranged from 1.06 to 2.5, and was below 1.71 for all but 5

of the 90 cases. The relative maxadds for the Gill, Murray, and Wright algonthm ranged from

1.6 to 77.8, distributed as follows among the various groups of test matrices. For the matrices

with eigenvalues in the [-1, 10000] range, the relative maxadds ranged from 2.1 to 5.6. In the

[-I, 1] eigenvalue range, the relative maxadds were in the range 4.9 to 77.8, and in the final

[-10000,-I eigenvalue range the relative maxaddx ranged from 1.6 to 5.1. Comparing on a

problem by problem basis, the new algorithm performed from 3.5 to 60.9 times better than the

Gill, Murray and Wright method in terms of the relative maxadd for the problems with the [-1,1]

eigenvalue range, and from 1.3 to 4.2 times better for the remaining test cases.

Figures 4A-41 show the relative maxadds for the new algorithm only, to illustrate more

clearly the how close I I E I I - is to ),(A) for this method. Also included in Figures 4A-41 are

the results for a version of the new algorithm that differs only in that bases its pivots at each itera-

tion of phase two upon the actual Gerschgorin bounds rather than their estimates. The additional

cost of calculating these bounds is about (n-k) 313, or at most n3/3, additional additions. The

results in Figure 4 show that pivoting on the exact Gerschgorin bounds leads to some improve-

ment in the size of relative maxadd, but we do not consider the improvements sufficient to war-

rant the extra cost in general.

The condition numbers of A +E for the two methods are given in Figures IB,D,F, 2B,D,F

and 3B,D,F in Appendix II. Basically, both methods produced acceptably conditioned matrices

in all cases. The conditions numbers for the matrices produced by the new method varied from

101 to 106, whereas the condition numbers for the Gill, Murray and Wright method varied from

101 to 108. The condition numbers for the new method are sometimes directly related to the final

step of the algorithm, which, if it increases IIE I I_ does so by the amount necessary to make

the final 2x2 submatrix positive definite with condition number t. In our test cases, the tolerance

Tr was (macheps)1' 3, or roughly 1)- 5.2 on the Sun 3/75 used for these tests. This accounts for the

condition numbers of almost 106 in all the cases where the final step increased I IE ,
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Decreasing this tolerance generally was found to decrease the condition number, usually without

appreciably increasing I E I 1_

Interestingly, in the cases where the new algorithm produced the most significant improve-

ments in relative maxadds, the test problems with the [-1, 1] eigenvalue range, it also produced

much better conditioned matrices than the Gill, Murray, and Wright algorithm. For this test set,

the ratios of the Gill, Murray and Wright condition numbers to the condition numbers of the new

algorithm were between 102 and 104 for n = 25, between 104 and 105 for n = 50, and between 105

and 101 for n = 75. For the other two eigenvalue ranges, the ratios of the condition numbers pro-

duced by the two algorithms all varied by at most 2 orders of magnitude, with the condition

numbers for the new algorithm consistently higher for the test problems in the [-1, 100001 eigen-

value range, and the Gill, Murray and Wright condition numbers usually higher for the test prob-

lems in the [-10000,-1] range.

Finally, Figures 5A,B in Appendix II contain the test results for a different set of matrices

of dimension n = 25 with eigenvalue range [-1, 100001. The difference between these test

matrices and the ones used in figures lA,B is that these matrices were created to have at least 3

negative eigenvalues, whereas the original test problems in the [-1, 10000) range were created

with at least 1 negative eigenvalue. What is interesting about the results of this new test set is

that on one particular matrix out of the 10, the new algorithm performs significantly worse than

the Gill, Murray and Wright algorithm. (This phenomenon did not occur with the test sets of size

50 or 75 in this range with 3 negative eigenvalues, so we have not included this data). The poor

behavior occurred when the algorithm was at the (n--4)h iteration, so we created a 4x4 matrix

with similar characteristics that illustrates the problem even more markedly

The matrix
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1890.3 -1705.6 -315.8 3000.3
-1705.6 1538.3 284.9 -2706.6

-315.8 284.9 52.5 -501.2

3000.3 -2706.6 -501.2 4760.8

has eigenvalues -0.378, -0.343, -0.248, and 8242.869. The first few steps performed by the new

algorithm are as follows:

1. Interchange row and column 4 with row and column 1, because A 4,4 is the maximum diagonal

element.

A 3 ....1 <O
2. Switch to phase 2 because A3.3 - A <01

3. Calculate the lower Gerschgorin bounds {-1447.3, -3158.8, -1049.4, -3131.4), and since

-Glow 3 is the maximum value, interchange row and column 3 with row and column 1.

4. Add (-Glowpi,,orow) = 1049.4 to A 1 1.

At this point in the computation, the new algorithm has already added much more to the

diagonal than is necessary to make A positive definite. From this point on it doesn't increase

IE j ,, so that the final value of I E I is 1049.4. On the other hand, the Gill, Murray, and

Wright algorithm produces IIE I I** = 1.01. This behavior occurs because, at the first iteration,

the Gill, Murray, and Wright algorithm pivots on the maximum diagonal element and then adds

nothing to the diagonal, which after elimination results in a 3x3 submatrix all of whose entries

have absolute value less than 0.52. This is guaranteed to then lead to a small IE -. (Indeed,

if our algorithm performed the same first step as the Gill, Murray, Wright algorithm and then pro-

ceeded as usual, it would produce I IE I I . = 0.665.)

The essential characteristic of this example is that A is equal to a large symmetric rank one

matrix plus a small indefinite matrix. Thus, if nothing is added to A Ii at the first iteration, the

remaining submatrix after the elimination has very small elements, and I IE II is small. The

Gill, Murray, and Wright algorithm will usually outperform ours on matrices of this type. We
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have experimented with modifications to our algorithm that perform well for this case, but all of

them resulted in degradation of our algorithm's performance in other cases. Since the case only

occurred once in the 120 test cases discussed in this section, we would hope that it is not common

in practice.

7. Conclusions

We have presented a new modified Cholesky factorization algorithm that does a good job

of meeting the obJectives outlined at the start of Section 3. It is based upon two new techniques,

the use of Gerschgorin circle theorem bounds to decide how much to add to the diagonal, and the

use of a two phase structure to differentiate between positive definite and non-positive definite

matrices. Given a symmetric matrix A, the factorization produces a Cholesky factorization of a

positive definite matrix A +E. Its cost is at most 2n 2 additions and n2/2 multiplications more

than the standard Cholesky factorization, and it does not perturb safely positive definite matrices

A. Its theoretical bound on I I E I I is a factor of n lower than for the Gill, Murray, and Wright

[19911 method. In computational tests on non-positive definite matrices, it virtually always pro-

duces a smaller IIE I[ than the method of Gill, Murray, and Wright, and the conditioning of

A +E is always quite acceptable. On the class of test problems where the Gill, Murray, and

Wright algorithm had tLe most difficulty, those with eigenvalue range [-1,1], the decreases in

E I and in the condition number of A +E are both substantial.

We have not tested the effect of substituting our new modified Cholesky factorization for

that of Gill, Murray, and Wright in optimization algorithms. The most common optimization test

problems have small n and few if any indefinite iterations, so probably there would be little effect

on these. The new algorithm might make a difference on problems where n is larger and there is

some indefiniteness. In our opinion, the biggest advantage of the new method for optimization
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purposes is its improved theoretical bound on fe II and the corresponding reduction in E E I

that has been observed in practice. These properties guard against overflows during the factoriza-

tion, and against steps (A +E)-i Vf (x) that are far too small.

In addition, the new algorithm leads to an easy implementation of trust region methods for

optinizauon, because i I E I I is generally within a factor of 1.5 of tle smaflcst e'genv.z' .(A)

ofA. By first calculating E, then replacing A with A+( I JE II)I ifE #, and then using the trust

region method for positive definite matrices, one will usually get the solution to the exact, possi-

bly indefinite trust region problem without using any other special provisions for dealing with

non-positive definite matrices. We have already used the factorization successfully in this con-

text. If there are other computational algorithms where a crude estimate of the most negative

eigenvalue of a matrix is useful, either by itself or as a starting estimate of some iterative pro-

cedure, then this factorization may provide a good way to find it.
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Appendix I -- Complete Modified Cholesky Decomposition Algorithm

Given A E R m  symmetric (stored in lower triangle) andr (e.g. T= (macheps)113 ),
find factorization L LT of A +E, E >0

phaseone := true
y:=max IAa I

j: 1
(* Phase One, A potentially positive definite )
While j _< n and phaseone = true do

( Pivot on maximum diagonal of remaining submatrix *)
i :=index of max A-.

j Si S i
if i j , switch rows and columns i and jof A

If min {Ai1 - -

j+i!Q!1, jj

then phaseone := false (* go to Phase Two *)
else (* perform jth iteration of factorization*)

Ljj = F-jj (* Ljj overwrites Ajj *)
Fori :=j+l ton do

Lij := Aij /Ljj (* Lij overwrites Aij *)
Fork :=j+l toi do

At := A, - Lij * LkJ
j :=j+l

(*end Phase One *)

(*Phase Two, A not positive definite')
If phaseone = false then

k := j - I (* k = number of iterations performed in Phase One *)
('Calculate lower Gerschgorin bounds of Ak+l *)

Fori := k+l ton do

gi :=-Aij I + A IA, I-An
=4 +1

(*Modified Cholesky Decomposition')
For j := k +1 ton-2 do

('Pivot on maximum lower Get .:hgorin bound estimate')
i :=index of max (gi}

j Si 5A'

if i #j, switch rows and columns i and j of A
('Calculate E,. and add to diagonal*)

normj := I I
(* =Ej *) = min{ 0,-Ajj +max( normj,ty} , 5prev }

if 8 > 0 then
Ajj := Ajj + 8
8prev :=8 (* prev will contain liE II- *)

(*update Gerschgorin bound estimates')
If Ajj ; normj then

temp := nor-1

fori :=j+l ton do
gi :=gi + I, IA * temp

(' perform jth iteration of factorization *)
same code as in Phase One
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(* final 2 x 2 submatrix *) r

ko 4i := eigenvalues of [A i An /
= max[O,-X. +r * max I T_ t (X.j -Xk),T }prey

if 5 > 0 then
Am-14-1 "-= An-,,^-,+ 8

AR, := A,., +
8prci := 8

-1:= i. 1  (* overwrites A.-,.l *)
A .... /L,,. 1 -1 (* overwrites A,.-, *)

Lx,. := (A,. -L ... 2)1 (* overwritesA., *)
( End Phase Two *)
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Appendix II -- Computational Results

5 IA. n=25. eig. r ,ange f-1.100001 106 lB. n=25. eiz. rrIranze f-1,10000]
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1-------- 1000
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note: relative maxadd = (maximum added to diagonal) / (- smallest eigenvalue)

Figure I - Performance of Existing and New Methods on 10 Indefinite Matrices with n=25
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METHODS: Gill, Murray & Wright

New Method

note: relative maxadd = (maximum added to diagonal) / -smallest eigenvalue)

Figure 2 - Performance of Existing and New Methods on 10 Indefinite Matrices with n=50
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note: relative maxadd = (maximum added to diagonal) I -smal-lest eigenvalue')

Fizure 3 - Performance of Existing and New Methods on 10 Indefinite Matrices wkinh n=77-
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IS .. 2'

0 5 10 0 5 10

matrix matrix

METHODS: New Method-----

New Method with (n**3) pivoing ....... ..

(note: two curves are identical in Fizures 4A,D )

Figure 4, Part I - Relative Maxadds for Two Versions of the New Method
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4G. n=75, eig. range [-1,100001 1.6 4H. n=75. eia. range [-1.11
' 1 . ,,

1.4,4

Cl M I I s.- I ... : C , ,

I , , % ......... ,
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Figure 4, Part II - Relative Maxadds for Two Versions of the New Method
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Figure 5 -- Performance of Existing and New Methods on a Test Set with 3 Negative Eigenvalues
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The modified Cholesky factorization of Gill and Murray plays an important role in optimization
algorithms. Given a symmetric but not necessarily posidve definite matrix A, it computes a Cholesky
factorizaton of A--E, where E=0 if A is safely positive definite, and E is a diagonal matrix chosen to
make A -E positivc definite otherw,'ise. The factorization costs only a small multiple of n 2 operations more
than the standard Cholesky factorization. We present a new algorithm that has these same prcperties, but
for which Lhe theoretical bound on JlE I is substantially smaller. It is based upon two new techniques, the
use of Gerschgorin bounds in seiecung the elements of E, and a new way of monitoring positive
definiteness. In extensive computational tests on indefinite matrices, the new factorization virtually always
produces smaller values of I [ E I than the existing method, without impairing the conditioning of A -E. In
some :ases the improvements are substantial. The new factorization may prove useful in optimization
algorithms.
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